43 research outputs found

    Smart Chips for Smart Surroundings -- 4S

    Get PDF
    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product development. In 4S we focused on heterogeneous building blocks such as analogue, hardwired functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a platform can adapt to a wide application space without the need for specialized ASICs. A novel power aware design flow and runtime system was developed. The runtime system decides dynamically about the near-optimal application mapping to the given hardware platform. The overall concept was verified on hardware platforms based on an existing SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and MPEG4 Video applications have been implemented on the platforms demonstrating the adaptability of the 4S concept

    Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia

    Get PDF
    An acute increase in blood flow triggers flow-mediated dilation (FMD), which is mainly mediated by endothelial nitric oxide synthase (eNOS). A long-term increase in blood flow chronically enlarges the arterial lumen, a process called arteriogenesis. In several common human diseases, these processes are disrupted for as yet unknown reasons. Here, we asked whether β1 integrin, a mechanosensory protein in endothelial cells, is required for FMD and arteriogenesis in the ischemic hindlimb. Permanent ligation of the femoral artery in C57BL/6J mice enlarged pre-existing collateral arteries and increased numbers of arterioles in the thigh. In the lower leg, the numbers of capillaries increased. Notably, injection of β1 integrin-blocking antibody or tamoxifen-induced endothelial cell-specific deletion of the gene for β1 integrin (Itgb1) inhibited both arteriogenesis and angiogenesis. Using high frequency ultrasound, we demonstrated that β1 integrin-blocking antibody or endothelial cell-specific depletion of β1 integrin attenuated FMD of the femoral artery, and blocking of β1 integrin function did not further decrease FMD in eNOS-deficient mice. Our data suggest that endothelial β1 integrin is required for both acute and chronic widening of the arterial lumen in response to hindlimb ischemia, potentially via functional interaction with eNOS

    Overview of the 4S project

    Get PDF
    In this paper an overview of the EU-FP6 ¿Smart Chips for Smart Surroundings¿ (4S) project is given. The overall mission of the 4S project is to define and develop efficient (ultra low-power), flexible, reconfigurable core building blocks, including the supporting tools, for future ambient systems. Dynamic reconfiguration offers the flexibility and adaptability needed for future ambient devices, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product developmen

    Smart Chips for Smart Surroundings -- 4S

    No full text
    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product development. In 4S we focused on heterogeneous building blocks such as analogue, hardwired functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a platform can adapt to a wide application space without the need for specialized ASICs. A novel power aware design flow and runtime system was developed. The runtime system decides dynamically about the near-optimal application mapping to the given hardware platform. The overall concept was verified on hardware platforms based on an existing SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and MPEG4 Video applications have been implemented on the platforms demonstrating the adaptability of the 4S concept
    corecore